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1
SYSTEM AND METHOD FOR
CONTACTLESS BLOOD PRESSURE
DETERMINATION

TECHNICAL FIELD

The following relates generally to detection of a human
blood pressure and more specifically to a system and method
for contactless human blood pressure determination, via a
data-driven and machine learning approach.

BACKGROUND

Measurement of blood pressure is the primary approach
used to diagnose conditions such as hypertension. Conven-
tionally, arterial pressures of the human circulatory system
are measured through invasive means, for example, by
penetrating the skin and taking pressure measurements from
within the blood vessels, such as with intra-arterial tech-
niques; or by non-invasive means, which provide an esti-
mate of the actual pressure. The former approach is typically
restricted to highly qualified and trained staff that monitor
arterial lines on patients at intensive care centres within a
hospital setting. The latter approach typically includes non-
invasive techniques seen in general practice for routine
examinations and monitoring. An exemplary arterial pres-
sure waveform signal measured from an inter-arterial blood
pressure monitor, including some of the associated features
of the signal, is shown in FIG. 7.

As an example, two currently popular conventional
approaches for conducting Non-Invasive Blood Pressure
(NIBP) measurements both require direct physical contact to
be established between an instrument and a human subject.

One of the conventional approaches, an auscultatory
approach, uses a stethoscope and a sphygmomanometer.
This approach includes an inflatable cuff placed around the
upper arm at roughly the same vertical height as the heart,
attached to a mercury or aneroid manometer.

The second of the conventional approaches, an oscillo-
metric approach, is functionally similar to that of the aus-
cultatory method, but with an electronic pressure sensor
(transducer) fitted in the cuff to detect blood flow, instead of
using the stethoscope and an expert’s judgment. In practice,
the pressure sensor is a calibrated electronic device with a
numerical readout of blood pressure. To maintain accuracy,
calibration must be checked periodically, unlike with the
mercury manometer. In most cases, the cuff is inflated and
released by an electrically operated pump and valve, which
may be fitted on the wrist (elevated to heart height) or other
area. The oscillometric method can vary widely in accuracy,
and typically needs to be checked at specified intervals, and
if necessary recalibrated.

Thus, conventional approaches require close access and
direct physical contact with a human subject’s body, typi-
cally with the arm of the subject. This contact requires that
the subject is compliant and aware that a blood pressure
measurement is underway. As an example, to acquire a
subject’s blood pressure, they must have knowledge of the
measurement and be physically collocated with the NIBP
instrument.

SUMMARY

In an aspect, there is provided a method for contactless
blood pressure determination of a human subject, the
method executed on one or more processors, the method
comprising: receiving a captured image sequence of light
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re-emitted from the skin of one or more humans; determin-
ing, using a trained hemoglobin concentration (HC) changes
machine learning model trained with a HC changes training
set, bit values from a set of bitplanes in the captured image
sequence that represent the HC changes of the subject, the
HC changes training set comprising the captured image
sequence; determining a blood flow data signal of one or
more predetermined regions of interest (ROIs) of the subject
captured on the images based on the bit values from the set
of bitplanes that represent the HC changes; extracting one or
more domain knowledge signals associated with the deter-
mination of blood pressure from the blood flow data signal
of each of the ROIs; building a trained blood pressure
machine learning model with a blood pressure training set,
the blood pressure training set comprising the blood flow
data signal of the one or more predetermined ROIs and the
one or more domain knowledge signals; determining, using
the blood pressure machine learning model trained with the
blood pressure training set, an estimation of blood pressure
for the human subject; and outputting the determination of
blood pressure.

In a particular case, determining the estimation of blood
pressure comprises determining an estimation of systolic
blood pressure (SBP) and diastolic blood pressure (DBP).

In another case, the set of bitplanes in the captured image
sequence that represent the HC changes of the subject are the
bitplanes that are determined to significantly increase a
signal-to-noise ratio (SNR).

In yet another case, the method further comprising pre-
processing the blood flow data signal with a Butterworth
filter or a Chebyshev filter.

In yet another case, extracting the one or more domain
knowledge signals comprises determining a magnitude pro-
file of the blood flow data signal of each of the ROIs.

In yet another case, determining the magnitude profile
comprises using digital filters to create a plurality of fre-
quency filtered signals of the blood flow data signal in the
time-domain for each image in the captured image sequence.

In yet another case, extracting the one or more domain
knowledge signals comprises determining a phase profile of
the blood flow data signal of each of the ROIs.

In yet another case, determining the phase profile com-
prises: applying a multiplier junction to the phase profile to
generate a multiplied phase profile; and applying a low pass
filter to the multiplied phase profile to generate a filtered
phase profile.

In yet another case, determining the phase profile com-
prises determining a beat profile, the beat profile comprising
a plurality of beat signals based on a Doppler or an inter-
ference effect.

In yet another case, extracting the one or more domain
knowledge signals comprises determining at least one of
systolic uptake, peak systolic pressure, systolic decline,
dicrotic notch, and diastolic runoff of the blood flow data
signal of each of the ROIs.

In yet another case, extracting the one or more domain
knowledge signals comprises determining waveform mor-
phology features of the blood flow data signal of each of the
ROIs.

In yet another case, extracting the one or more domain
knowledge signals comprises determining one or more bio-
signals, the biosignals comprising at least one of heart rate
measured from the human subject, Mayer waves measured
from the human subject, and breathing rates measured from
the human subject.
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In yet another case, the method further comprising receiv-
ing ground truth blood pressure data, and wherein the blood
pressure training set further comprises the ground truth
blood pressure data.

In yet another case, the ground truth blood pressure data
comprises at least one of an intra-arterial blood pressure
measurement of the human subject, an auscultatory mea-
surement of the human subject, or an oscillometric mea-
surement of the human subject.

In yet another case, the method further comprising apply-
ing a plurality of band-pass filters, each having a separate
passband, to each of the blood flow data signals to produce
a bandpass filter (BPF) signal set for each ROI, and wherein
the blood pressure training set comprising the BPF signal set
for each ROI.

In another aspect, there is provided a system for contact-
less blood pressure determination of a human subject, the
system comprising one or more processors and a data
storage device, the one or more processors configured to
execute: a transdermal optical imaging (TOI) module to
receive a captured image sequence of light re-emitted from
the skin of one or more humans, the TOI module determines,
using a trained hemoglobin concentration (HC) changes
machine learning model trained with a HC changes training
set, bit values from a set of bitplanes in the captured image
sequence that represent the HC changes of the subject, the
HC changes training set comprising the captured image
sequence, the TOI module determines a blood flow data
signal of one or more predetermined regions of interest
(ROIs) of the subject captured on the images based on the bit
values from the set of bitplanes that represent the HC
changes; a profile module to extract one or more domain
knowledge signals associated with the determination of
blood pressure from the blood flow data signal of each of the
ROIs; a machine learning module to build a trained blood
pressure machine learning model with a blood pressure
training set, the blood pressure training set comprising the
blood flow data signal of the one or more predetermined
ROIs and the one or more domain knowledge signals, the
machine learning module determines, using the blood pres-
sure machine learning model trained with a blood pressure
training set, an estimation of blood pressure of the human
subject; and an output module to output the determination of
blood pressure.

In a particular case, determination of the estimation of
blood pressure by the machine learning module comprises
determining an estimation of systolic blood pressure (SBP)
and diastolic blood pressure (DBP).

In another case, the set of bitplanes in the captured image
sequence that represent the HC changes of the subject are the
bitplanes that are determined to significantly increase a
signal-to-noise ratio (SNR).

In yet another case, the system further comprising a filter
module to preprocess the blood flow data signal with a
Butterworth filter or a Chebyshev filter.

In yet another case, extracting the one or more domain
knowledge signals by the profile module comprises deter-
mining a magnitude profile of the blood flow data signal of
each of the ROIs.

In yet another case, determining the magnitude profile by
the profile module comprises using digital filters to create a
plurality of frequency filtered signals of the blood flow data
signal in the time-domain for each image in the captured
image sequence.
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In yet another case, extracting the one or more domain
knowledge signals by the profile module comprises deter-
mining a phase profile of the blood flow data signal of each
of the ROIs.

In yet another case, determining the phase profile by the
profile module comprises: applying a multiplier junction to
the phase profile to generate a multiplied phase profile; and
applying a low pass filter to the multiplied phase profile to
generate a filtered phase profile.

In yet another case, determining the phase profile by the
profile module comprises determining a beat profile, the beat
profile comprising a plurality of beat signals based on a
Doppler or an interference effect.

In yet another case, extracting the one or more domain
knowledge signals by the profile module comprises deter-
mining at least one of systolic uptake, peak systolic pressure,
systolic decline, dicrotic notch, and diastolic runoff of the
blood flow data signal of each of the ROIs.

In yet another case, extracting the one or more domain
knowledge signals by the profile module comprises deter-
mining waveform morphology features of the blood flow
data signal of each of the ROIs.

In yet another case, extracting the one or more domain
knowledge signals by the profile module comprises deter-
mining one or more biosignals, the biosignals comprising at
least one of heart rate measured from the human subject,
Mayer waves measured from the human subject, and breath-
ing rates measured from the human subject.

In yet another case, the profile module receives ground
truth blood pressure data, and wherein the blood pressure
training set further comprises the ground truth blood pres-
sure data.

In yet another case, the ground truth blood pressure data
comprises at least one of an intra-arterial blood pressure
measurement of the human subject, an auscultatory mea-
surement of the human subject, or an oscillometric mea-
surement of the human subject.

In yet another case, the system further comprising a filter
module to apply a plurality of band-pass filters, each having
a separate passband, to each of the blood flow data signals
to produce a bandpass filter (BPF) signal set for each ROI,
and wherein the blood pressure training set comprising the
BPF signal set for each ROL.

These and other aspects are contemplated and described
herein. It will be appreciated that the foregoing summary
sets out representative aspects of systems and methods for
the determination of blood pressure to assist skilled readers
in understanding the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention will become more apparent
in the following detailed description in which reference is
made to the appended drawings wherein:

FIG. 1 is an block diagram of a system for contactless
blood pressure determination, according to an embodiment;

FIG. 2 is a flowchart for a method for contactless blood
pressure determination, according to an embodiment;

FIG. 3 illustrates re-emission of light from skin epidermal
and subdermal layers;

FIG. 4 is a set of surface and corresponding transdermal
images illustrating change in hemoglobin concentration for
a particular human subject at a particular point in time;

FIG. 5 is a diagrammatic representation of a memory cell;

FIG. 6 is graph illustrating an exemplary TOI signal
generated by the system of FIG. 1;
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FIG. 7 is a graph illustrating an exemplary arterial pres-
sure signal from a typical inter-arterial blood pressure moni-
tor;

FIG. 8 is a diagrammatic block illustration of the system
of FIG. 1; and

FIG. 9 is an illustration of bitplanes for a three channel
image.

DETAILED DESCRIPTION

Embodiments will now be described with reference to the
figures. For simplicity and clarity of illustration, where
considered appropriate, reference numerals may be repeated
among the Figures to indicate corresponding or analogous
elements. In addition, numerous specific details are set forth
in order to provide a thorough understanding of the embodi-
ments described herein. However, it will be understood by
those of ordinary skill in the art that the embodiments
described herein may be practiced without these specific
details. In other instances, well-known methods, procedures
and components have not been described in detail so as not
to obscure the embodiments described herein. Also, the
description is not to be considered as limiting the scope of
the embodiments described herein.

Various terms used throughout the present description
may be read and understood as follows, unless the context
indicates otherwise: “or” as used throughout is inclusive, as
though written “and/or”; singular articles and pronouns as
used throughout include their plural forms, and vice versa;
similarly, gendered pronouns include their counterpart pro-
nouns so that pronouns should not be understood as limiting
anything described herein to use, implementation, perfor-
mance, etc. by a single gender; “exemplary” should be
understood as “illustrative” or “exemplifying” and not nec-
essarily as “preferred” over other embodiments. Further
definitions for terms may be set out herein; these may apply
to prior and subsequent instances of those terms, as will be
understood from a reading of the present description.

Any module, unit, component, server, computer, terminal,
engine or device exemplified herein that executes instruc-
tions may include or otherwise have access to computer
readable media such as storage media, computer storage
media, or data storage devices (removable and/or non-
removable) such as, for example, magnetic disks, optical
disks, or tape. Computer storage media may include volatile
and non-volatile, removable and non-removable media
implemented in any method or technology for storage of
information, such as computer readable instructions, data
structures, program modules, or other data. Examples of
computer storage media include RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digi-
tal versatile disks (DVD) or other optical storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other medium which can be
used to store the desired information and which can be
accessed by an application, module, or both. Any such
computer storage media may be part of the device or
accessible or connectable thereto. Further, unless the context
clearly indicates otherwise, any processor or controller set
out herein may be implemented as a singular processor or as
a plurality of processors. The plurality of processors may be
arrayed or distributed, and any processing function referred
to herein may be carried out by one or by a plurality of
processors, even though a single processor may be exem-
plified. Any method, application or module herein described
may be implemented using computer readable/executable
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instructions that may be stored or otherwise held by such
computer readable media and executed by the one or more
processors.

The following relates generally to detection of human
blood pressure and more specifically to a system and method
for contactless human blood pressure determination, via a
data-driven and machine learning approach.

In embodiments of the system and method described
herein, technical approaches are provided to solve the tech-
nological problem of determining human blood pressure
without having to contact a human subject by the blood
pressure measurement instrument. Blood pressure is deter-
mined using image processing techniques performed over a
plurality of images captured by one or more digital imaging
cameras, such as a digital video camera.

The technical approaches described herein offer the sub-
stantial advantages of not requiring direct physical contact
between a subject and a blood pressure measurement instru-
ment. As an example of a substantial advantage using the
technical approaches described herein, remote blood pres-
sure measurement can be performed on a subject using a
suitable imaging device, such as by a video camera com-
municating over a communications channel. As another
example of a substantial advantage using the technical
approaches described herein, blood pressure measurements
can be determined from previously recorded video material.

The technical approaches described herein also offer the
substantial advantages of not requiring periodic recalibra-
tion or certification of an instrument. The system and
method described herein advantageously do not make use of
any moving components such as a pump or an expanding
arm cuff and bladder, which typically require recalibration
or certification.

The technical approaches described herein advanta-
geously utilize body specific data driven machine-trained
models that are executed against an incoming video stream.
In some cases, the incoming video stream are a series of
images of the subject’s facial area. In other cases, the
incoming video stream can be a series of images of any body
extremity with exposed vascular surface area; for example,
the subject’s palm. In most cases, each captured body
extremity requires separately trained models. For the pur-
poses of the following disclosure, reference will be made to
capturing the subject’s face with the camera; however, it will
be noted that other areas can be used with the techniques
described herein.

Referring now to FIG. 1, a system for contactless blood
pressure determination 100 is shown. The system 100
includes a processing unit 108, one or more video-cameras
103, a storage device 101, and an output device 102. The
processing unit 108 may be communicatively linked to the
storage device 101, which may be preloaded, periodically
loaded, and/or continuously loaded with video imaging data
obtained from one or more video-cameras 103. The pro-
cessing unit 108 includes various interconnected elements
and modules, including a TOI module 110, a machine
learning module 112, a signal processing module 114, a first
filter module 116, a combination module 118, a profile
module 120, a multiplier module 122, and an output module
126. The TOI module includes an image processing unit
104. The video images captured by the video-camera 103
can be processed by the image processing unit 104 and
stored on the storage device 101. In further embodiments,
one or more of the modules can be executed on separate
processing units or devices, including the video-camera 103
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or output device 102. In further embodiments, some of the
features of the modules may be combined or run on other
modules as required.

In some cases, the processing unit 108 can be located on
a computing device that is remote from the one or more
video-cameras 103 and/or the output device 102, and linked
over an appropriate networking architecture; for example, a
local-area network (LAN), a wide-area network (WAN), the
Internet, or the like. In some cases, the processing unit 108
can be executed on a centralized computer server, such as in
off-line batch processing.

The term “video”, as used herein, can include sets of still
images. Thus, “video camera” can include a camera that
captures a sequence of still images and “imaging camera”
can include a camera that captures a series of images
representing a video stream.

Using transdermal optical imaging (TOI), the TOI module
110 can isolate hemoglobin concentration (HC) from raw
images taken from the digital camera 103. Referring now to
FIG. 3, a diagram illustrating the re-emission of light from
skin is shown. Light 301 travels beneath the skin 302, and
re-emits 303 after travelling through different skin tissues.
The re-emitted light 303 may then be captured by optical
cameras 103. The dominant chromophores affecting the
re-emitted light are melanin and hemoglobin. Since melanin
and hemoglobin have different color signatures, it has been
found that it is possible to obtain images mainly reflecting
HC under the epidermis as shown in FIG. 4.

Using transdermal optical imaging (TOI), the TOI module
110, via the image processing unit 104, obtains each cap-
tured image in a video stream, from the camera 103, and
performs operations upon the image to generate a corre-
sponding optimized hemoglobin concentration (HC) image
of the subject. From the HC data, the facial blood flow
localized volume concentrations can be determined. The
image processing unit 104 isolates HC in the captured video
sequence. In an exemplary embodiment, the images of the
subject’s faces are taken at 30 frames per second using a
digital camera 103. It will be appreciated that this process
may be performed with alternative digital cameras, lighting
conditions, and frame rates.

In a particular case, isolating HC can be accomplished by
analyzing bitplanes in the sequence of video images to
determine and isolate a set of the bitplanes that approxi-
mately maximize signal to noise ratio (SNR). The determi-
nation of high SNR bitplanes is made with reference to a first
training set of images constituting the captured video
sequence, in conjunction with blood pressure data gathered
from the human subjects. The determination of high SNR
bitplanes is made with reference to an HC training set
constituting the captured video sequence. In some cases, this
data is supplied along with other devices, for example, EKG,
pneumatic respiration, blood pressure, laser Doppler data, or
the like, collected from the human subjects, and received by
the profile module 120, in order to provide ground truth to
train the training set for HC change determination. A blood
pressure training data set can consist of blood pressure data
obtained from human subjects by using one or more blood
pressure measurement devices as ground truth data; for
example, an intra-arterial blood pressure measurement
approach, an auscultatory approach, or an oscillometric
approach. The selection of the training data set based on one
of these three exemplary approaches depends on a setting in
which the contactless blood pressure measurement system is
used; as an example, if the human subject is in a hospital
intensive care setting, the training data can be received from
an intra-arterial blood pressure measurement approach.
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Bitplanes are a fundamental aspect of digital images.
Typically, a digital image consists of certain number of
pixels (for example, a widthxheight of 1920x1080 pixels).
Each pixel of the digital image having one or more channels
(for example, color channels red, green, and blue (RGB)).
Each channel having a dynamic range, typically 8 bits per
pixel per channel, but occasionally 10 bits per pixel per
channel for high dynamic range images. Whereby, an array
of such bits makes up what is known as the bitplane. In an
example, for each image of color videos, there can be three
channels (for example, red, green, and blue (RGB)) with 8
bits per channel. Thus, for each pixel of a color image, there
are typically 24 layers with 1 bit per layer. A bitplane in such
a case is a view of a single 1-bit map of a particular layer of
the image across all pixels. For this type of color image,
there are therefore typically 24 bitplanes (i.e., a 1-bit image
per plane). Hence, for a 1-second color video with 30 frames
per second, there are at least 720 (30x24) bitplanes. FIG. 9
is an exemplary illustration of bitplanes for a three-channel
image (an image having red, green and blue (RGB) chan-
nels). Each stack of layers is multiplied for each channel of
the image; for example, as illustrated, there is a stack of
bitplanes for each channel in an RGB image. In the embodi-
ments described herein, Applicant recognized the advan-
tages of using bit values for the bitplanes rather than using,
for example, merely the averaged values for each channel.
Thus, a greater level of accuracy can be achieved for making
predictions of HC changes, and thus blood pressure mea-
surements as disclosed herein, and as described for making
predictions. Particularly, a greater accuracy is possible
because employing bitplanes provides a greater data basis
for training the machine learning model.

TOI signals can be taken from regions of interest (ROIs)
of the human subject, for example forehead, nose, and
cheeks, and can be defined manually or automatically for the
video images. The ROIs are preferably non-overlapping.
These ROIs are preferably selected on the basis of which HC
is particularly indicative of blood pressure measurement.
Using the native images that consist of all bitplanes of all
three R, G, B channels, signals that change over a particular
time period (for example, 10 seconds) on each of the ROIs
are extracted.

The raw signals can be pre-processed using one or more
filters by the filter module 116, depending on the signal
characteristics. Such filters may include, for example, a
Butterworth filter, a Chebyshev filter, or the like. Using the
filtered signals from two or more ROIs, machine learning is
employed to systematically identify bitplanes that will sig-
nificantly increase the signal differentiation (for example,
where the SNR improvement is greater than 0.1 db) and
bitplanes that will contribute nothing or decrease the signal
differentiation. After discarding the latter, the remaining
bitplane images can optimally determine blood flow gener-
ally associated with a determination of systolic and diastolic
blood pressure.

Machine learning approaches (such as a Long Short Term
Memory (LSTM) neural network, or a suitable alternative
such as non-linear Support Vector Machine) and deep learn-
ing may be used to assess the existence of common spatial-
temporal patterns of hemoglobin changes across subjects.
The machine learning process involves manipulating the
bitplane vectors (for example, 24 bitplanesx30 fps) using the
bit value in each pixel of each bitplane along the temporal
dimension. In one embodiment, this process requires sub-
traction and addition of each bitplane to maximize the signal
differences in all ROIs over the time period. In some cases,
to obtain reliable and robust computational models, the
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entire dataset can be divided into three sets: the training set
(for example, 80% of the whole subject data), the test set (for
example, 10% of the whole subject data), and the external
validation set (for example, 10% of the whole subject data).
The time period can vary depending on the length of the raw
data (for example, 15 seconds, 60 seconds, or 120 seconds).
The addition or subtraction can be performed in a pixel-wise
manner. An existing machine learning algorithm, the Long
Short Term Memory (LSTM) neural network, or a suitable
alternative thereto is used to efficiently and obtain informa-
tion about the improvement of differentiation in terms of
accuracy, which bitplane(s) contributes the best information,
and which does not in terms of feature selection. The Long
Short Term Memory (LSTM) neural network allow us to
perform group feature selections and classifications. The
LSTM machine learning algorithm are discussed in more
detail below. From this process, the set of bitplanes to be
isolated from image sequences to reflect temporal changes in
HC is obtained for determination of blood pressure.

To extract facial blood flow data, facial HC change data
on each pixel of each subject’s face image is extracted as a
function of time when the subject is being viewed by the
camera 103. In some cases, to increase signal-to-noise ratio
(SNR), the subject’s face can be divided into a plurality of
regions of interest (ROIs). The division can be according to,
for example, the subject’s differential underlying physiol-
ogy, such as by the autonomic nervous system (ANS)
regulatory mechanisms. In this way, data in each ROI can be
averaged. The ROIs can be manually selected or automati-
cally detected with the use of a face tracking software. The
machine learning module 112 can then average the data in
each ROI. This information can then form the basis for the
training set. As an example, the system 100 can monitor
stationary HC changes contained by a selected ROI over
time, by observing (or graphing) the resulting temporal
profile (for example, shape) of the selected ROI HC intensity
values over time. In some cases, the system 100 can monitor
more complex migrating HC changes across multiple ROIs
by observing (or graphing) the spatial dispersion (HC dis-
tribution between ROIs) as it evolves over time.

Thus, it is possible to obtain a video sequence of any
subject and apply the HC extracted from selected bitplanes
to the computational models to determine blood flow gen-
erally associated with systolic and diastolic blood pressure.
For long running video streams with changes in blood flow
and intensity fluctuations, changes of the estimation and
intensity scores over time relying on HC data based on a
moving time window (e.g., 10 seconds) may be reported.

In an example using the Long Short Term Memory
(LSTM) neural network, the LSTM neural network com-
prises at least three layers of cells. The first layer is an input
layer, which accepts the input data. The second (and perhaps
additional) layer is a hidden layer, which is composed of
memory cells (see FIG. 5). The final layer is output layer,
which generates the output value based on the hidden layer
using Logistic Regression.

Each memory cell, as illustrated, comprises four main
elements: an input gate, a neuron with a self-recurrent
connection (a connection to itself), a forget gate and an
output gate. The self-recurrent connection has a weight of
1.0 and ensures that, barring any outside interference, the
state of a memory cell can remain constant from one time
step to another. The gates serve to modulate the interactions
between the memory cell itself and its environment. The
input gate permits or prevents an incoming signal to alter the
state of the memory cell. On the other hand, the output gate
can permit or prevent the state of the memory cell to have
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an effect on other neurons. Finally, the forget gate can
modulate the memory cell’s self-recurrent connection, per-
mitting the cell to remember or forget its previous state, as
needed.

The equations below describe how a layer of memory
cells is updated at every time step t. In these equations:

X, is the input array to the memory cell layer at time t. In
our application, this is the blood flow signal at all ROIs

2 =
xtf[xlrxzt e 'xnt]

W, W, W, W, U, U, U, U, and V, are weight
matrices; and
b,, bs b, and b, are bias vectors .
First, we compute the values for i,, the input gate, and C,
the candidate value for the states of the memory cells at time
t.

i=o(Wx AU, 1+b;)

C~tanh(Wx+Uh, +b )

Second, we compute the value for f,, the activation of the
memory cells’ forget gates at time t:

JEoWxA+Uh, 1 +b)

Given the value of the input gate activation i, the forget
gate activation f, and the candidate state value C,, we can
compute C, the memory cells’ new state at time t:

Ct:it*ét-"f;*ct—l

With the new state of the memory cells, we can compute
the value of their output gates and, subsequently, their
outputs:

OFO(WxX AU +V,Ctb,)

k=0 anh(C,)

Based on the model of memory cells, for the blood flow
distribution at each time step, we can calculate the output
from memory cells. Thus, from an input sequence Xx,, X,
Xs, - - -, X,, the memory cells in the LSTM layer will produce
a representation sequence hy,, hj, h,, ..., h,.

The goal is to classify the sequence into different condi-
tions. The Logistic Regression output layer generates the
probability of each condition based on the representation
sequence from the LSTM hidden layer. The vector of the
probabilities at time step t can be calculated by:

Psoftmax (Wt o)

where W,,,,.,,,, is the weight matrix from the hidden layer to
the output layer, and b,,,,,,,, is the bias vector of the output
layer. The condition with the maximum accumulated prob-
ability will be the predicted condition of this sequence.

The machine learning module 112 uses the dynamic
changes, over time, of localized blood-flow localized vol-
ume concentrations at each of the regions-of-interest (ROI)
determined by the TOI module 110 to determine blood
pressure. The blood pressure measurement approach, used
by the machine learning module 112 on the HC change data
from the TOI module 110, utilizes a priori generation of
specific machine trained computational models combined
with the continuous real-time extraction of features from the
dynamic observed behaviour of a subject’s measured blood
flow to produce a predictive estimate of the subject’s blood
pressure.

The iterative process of machine learning, by the machine
learning module 112, allows for the generation of probabi-
listic mappings or multi-dimensional transfer-functions
between the extracted bio-signals presented as training
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input, as described herein, and the resultant systolic blood
pressure (SBP) and diastolic blood pressure (DBP) estimates
as the outputs. To train the machine learning module 112,
systematic collection of TOI data from a plurality of human
subjects, who preferably meet certain stratification criteria
for the specific population study, is utilized.

During a machine training cycle, by the machine learning
module 112, TOI videos of a plurality of subjects are
collected under controlled circumstances and with accom-
panying “ground truth” information alongside (as described
herein). Preferably, the plurality of subjects cover a diverse
spectrum of ages, genders, ethnicities, pregnancy, and the
like. Preferably, the plurality of subjects have a variety of
blood-pressure conditions, from hypotensive to hyperten-
sive. The machine learning models can be trained with
increasing robustness as the diversity of the subjects’
increases.

The machine learning models are generated according to
a supervised training process, where the “ground truth”
blood pressure, for both systolic and diastolic data-points,
are labelled as a target condition and a variety of training
examples are presented in rounds. The training examples are
prepared from the subject dataset by the techniques
described herein. These techniques utilize advanced data-
science machine learning architectures such as Multi-Level
Perceptron and Deep (hierarchical) Neural Networks, which
are capable of ‘deciphering’ non-obvious relationships from
large datasets to make predictive outcomes. In some cases,
the accuracy of the blood pressure estimates from such
models is linearly proportional to the quantity and quality of
the training dataset.

Turning to FIG. 2, a flowchart for a method for contactless
blood pressure determination 200 is shown.

In some cases, for increasing the accuracy of the machine
learning model regarding the relationships between blood
flow data (as input) and blood pressure estimates (as output),
and for reducing the time to arrive at training convergence,
the method 200 can leverage domain knowledge to enhance
the quality of the input data. Such domain knowledge can
include certain attributes, qualities or features of the input
data, collected by the profile module 120, that can be
consequential to increasing the accuracy of the relationship
between the input and the output; for example, systolic
rising time, amplitude of systolic peak, amplitude of dicrotic
notch, dicrotic notch time, and pulse pressure. Extracting
such domain knowledge from the input data and providing
it into the machine learning model during an iterative
training process, the training of the machine learning model
can be exaggerated by the certain attributes, qualities or
features, such that the accuracy of the machine learning
training can benefit from the inclusion of the domain knowl-
edge. At block 202, facial blood flow is extracted from the
video using transdermal optical imaging by the TOI module
110, as described herein, for localized volume concentra-
tions at defined regions-of-interest (ROI) on the face. In
addition, the TOI module 110 records dynamic changes of
such localized volume concentrations over time.

In an example, the face can be divided into ‘m’ different
regions of interest. In this case, there will be ‘m’ separate
ROI signals, each processing a unique signal extracted from
the facial image. The grouping of these ‘m’ ROI signals is
collectively referred to as a bank of ROI signals.

FIG. 6 illustrates an exemplary signal, measured as a
function of time, outputted by the TOI module 110 for a
particular ROI. As shown, Applicant advantageously recog-
nized that the signal extracted from the TOI module at least
partially resembles an exemplary signal taken from an
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inter-arterial blood pressure monitor, as shown in FIG. 7. In
this case, while the TOI signal may be somewhat noisier
than the signal extracted from the inter-arterial blood pres-
sure monitor, the pertinent characteristics of the signal can
be extracted and thus used to train the machine learning
model; for example, characteristics like systolic uptake 602,
peak systolic pressure 604, systolic decline 606, dictrotic
notch 608, and diastolic runoff 610.

At block 204, the blood-flow volume data from each ROI
is processed by the signal processing module 114. The
blood-flow volume data from each ROI can be treated as an
independent signal and routed through a corresponding
processing path. In this way, multiple ROIs each generate
signals which are independently, yet concurrently, processed
by the signal processing module 114 using digital signal
processing (DSP) techniques. The TOI module 110 gener-
ates quantity ‘m’ uniquely defined ROIs superimposed over
the facial image, whose boundaries are preferably non-
overlapping in area. In other cases, the ROI boundaries may
be overlapping.

At block 206, the filter module 116 analyzes ‘n’ separately
defined frequency passbands over the image frequency
spectrum received from the signal processing module 114.
The spectral energy within each passband is measured by
utilizing a narrowband digital filter with ‘bandpass’ (BPF)
characteristics. Each of the resultant bandpass signals is
called a “BPF signal” or “BPF instance”. In this way, each
bandpass filter implements a passband consisting of crisply
defined lower and upper frequency specification, where a
gain (within the passband range) is preferably much greater
than a provided attenuation (outside the passband range).

The filter module 116 constructs each BPF signal as an
individual 12th order Elliptical digital filter. Each filter
preferably has identical bandpass start/stop and gain/attenu-
ation characteristics, but differing in configured start/stop
‘edge’ frequencies. The filter module 116 advantageously
uses this high-order filter architecture to balance the require-
ments for a steep roll-off magnitude characteristic with
minimal phase distortion. In some cases, the passband start’
frequency is configurable. In some cases, the passband range
(span) is fixed for every BPF at 0.1 Hz; as an example,
meaning that the ‘end’ frequency will be calculated as the
‘start’ frequency plus 0.1 Hz.

In some cases, at block 208, the combination module 118
combines a set of ‘n” discrete BPF instances. In this way, a
large contiguous frequency range can be covered by assign-
ing stepwise increasing ‘start’ frequencies to each BPF
instance. Each BPF signal can thus operate on a portion of
the facial image available frequency spectrum. Deployment
of progressive assignments for the BPF ‘start’ frequencies
can ensure approximately complete coverage of the spec-
trum; as an example, between 0.1 Hz and 6.0 Hz, with a
granularity of 0.1 Hz, yielding a total of 60 BPF instances.

Each ROI signal, of quantity ‘m’ in total, will have a
locally designated BPF set, of quantity ‘n’ BPF signals in
total, to divide and process the frequency spectrum of the
ROI signal, as described above. This aggregation of nar-
rowband filters is collectively referred to as the “filter bank”.

In some cases, at block 210, the profile module 120
decomposes the ROI signals, acquired across multiple ROlIs,
to generate a multi-dimensional frequency profile (also
called a magnitude profile) and a phase profile (also called
a timing profile or velocity profile). The magnitude profile
and the timing profile are used as features (input) to the
machine learning model by the machine learning module
112. This “feature engineering” can advantageously be used
to enhance the effectiveness of the machine learning training
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process by increasing the useful input data for differentiating
blood pressure determinations; and thus, have a higher
accuracy at estimating blood pressure.

In the present embodiment, domain knowledge deter-
mined by the profile module 120 can include the magnitude
profile to enhance an attribute of the blood flow input data.
In the case of the magnitude profile, a distribution of
frequency information across the blood flow data (per ROI)
has been determined by the Applicant to have significance to
the estimation of the blood pressure values. As such, as
described below, a frequency spectrum analysis per ROI, in
this case using fixed banks of digital filters, is performed.
The digital filters’ signals provide a real-time frequency
spectrum of the time-domain signal; comparable to perform-
ing fast Fourier transform (FFT) but on every frame. An
intended advantage of using digital filters is to create ‘n’
individual frequency filtered streams that can be manipu-
lated and/or routed independently to build the machine
learning model. The analysis is thus then provided to the
machine learning model to enhance the accuracy of estimat-
ing the blood pressure output values.

In the present embodiment, domain knowledge deter-
mined by the profile module 120 can also include the
velocity or speed of the blood-flow input data, provided to
the machine learning model, for enhancing the accuracy of
estimating the blood pressure output values. In a certain
case, a beat profile, comprising a collection of beat signals,
can be used to quantity the velocity of the blood-flow input
data. Beat signals are a motion detection technique based on
the Doppler or interference effect. Two beat signals of
exactly the same frequency will have zero-hertz (difference)
beat signal when multiplied. The frequency of the beat
signal is linearly proportional to the ‘difference’ between the
two fundamental signals. In this way, when two arbitrary
signals are received and multiplied, the resulting signal will
be the difference (subtraction) of the two input frequencies.
This difference in frequencies can then be converted to a
motion or velocity.

As described, a beat signal can be used to derive an
indication of motion of one ROI blood flow signal relative
to another ROI blood flow signal; where the frequency of the
resultant beat signal is proportional to a difference in blood
flow velocity (known as the heterodyne effect). A beat vector
can be created for each ROI against some or all of the other
ROIs (eliminating any redundant pairs); whereby this col-
lection of beat vectors can be considered the timing profile.
In some cases, the timing profile can be constantly updated
at fixed intervals. As such, the timing profile can represent
an overall complex interference pattern which is based on
the differences in blood flow velocities. Therefore the timing
profile can be provided to the machine learning model to
emphasize blood flow velocity in order to enhance the
accuracy of estimating the blood pressure output values.

The magnitude profile includes ‘n’ discrete points which
span the range from the low to the high end of the analyzed
spectrum. The magnitude profile is generated by the profile
module 120 by creating a single summing junction F(i),
where T represents a frequency step or positional index for
summation of quantity ‘m’ total BPF outputs associated with
the frequency step ‘i’. Each magnitude point, F(i) represents
a measure of the narrowband spectral energy summed across
‘m’ separate ROlIs.

The profile module 120 constructs the timing profile ‘P’
from quantity ‘s’ slices, with each P(s) slice representing the
sum of all possible pair combinations of quantity ‘m’ total
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BPF outputs associated with the frequency step ‘i’. In some
cases, the potential pairings are reduced to eliminate redun-
dant combinations.

In some cases, at block 212, the pair combinations, or
remaining unique pair combinations, are routed to a multi-
plier module 122, representing a multiplier junction at index
k’, to create a new ‘hetrodyne’ output signal H(i, k), which
is determined via multiplication of signals from different
inputs. For each frequency step ‘1°, the ‘k’ index will range
through ((mx(m-1))/2) total junctions. P(s) therefore repre-
sents the summation of H(i,k) for a given step ‘i’. There are
quantity ‘n’ slices of output signals H(i, k) in total to cover
the entire spectrum of BPF filters.

In some cases, at block 214, the filter module 116 further
processes the ‘P’ profile by a low pass filter (LPF). In this
way, the filter module 116 can remove the sidebands created
in the heterodyne alterations while providing a quantifying
measure to the ‘beat’ signal energy resulting from the signal
pairings.

In some cases, the machine learning module 112 can
utilize selective configurations, such as those configured by
a trainer, of the temporal (time changing) features provided
by the magnitude profile and the frequency profile to create
individually trained model(s), each emphasizing different
training characteristics. As described herein, these numeri-
cally derived features can also be combined with one or
more physiological biosignals that are determined from the
TOI blood-flow data; for example, heart-rate, Mayer wave,
respiration or breathing cycle, other low or ultra-low fre-
quency arterial oscillations which are naturally occurring
and continuously present within the subject, and the like.

Both the features outputted by the filter module 116 and
the recovered biosignals (physiological) from the TOI
blood-flow can be utilized during the a priori machine
training process, as described above, as well as in a poste-
riori blood pressure estimation, as described herein.

At block 216, the output module 126 outputs, via the
trained models of the machine learning module 112, the
estimates of systolic blood pressure (SBP) and diastolic
blood pressure (DBP) to the output device 102. In some
cases, the output module 126, at block 218, can additionally
output supplementary outputs to the output device 102. In
some cases, the supplementary outputs can be estimated
outputs of a mean (average) SBP and a mean (average) DBP.
In some cases, the supplementary and independent output
can be a pulse pressure (PP) being the difference between
SBP and DBP. As an example, these supplementary output
values may be used to provide validation points (or limits)
for dynamic shifts in the estimates of systolic blood pressure
(SBP) and diastolic blood pressure (DBP); such as to
differentiate between rapid (acute) changes in the subject’s
blood pressure versus longer term (chronic) blood pressure
measurements.

Accordingly, the method for contactless blood pressure
determination 200 uses machine learning to determine esti-
mates of SBP and DBP. The machine learning approach,
described herein, of iterative training ‘encodes’ the complex
relationships between the blood flow raw data inputs and the
estimated blood pressure outputs. The encoding is of mul-
tiple vectors of weights corresponding to the coefficients of
salient multi-dimensional transfer functions.

The machine trained models, described herein, use train-
ing examples that comprise known inputs (for example, TOI
blood flow data) and known outputs (ground truths) of SBP
and DBP values. The relationship being approximated by the
machine learning model is TOI blood-flow data to SBP and
DBP estimates; whereby this relationship is generally com-
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plex and multi-dimensional. Through iterative machine
learning training, such a relationship can be outputted as
vectors of weights and/or coefficients. The trained machine
learning model being capable of using such vectors for
approximating the input and output relationship between
TOI blood flow input and blood pressure estimated output.

In the machine learning models, the magnitude profile
F(@) transforms the TOI input data stream into frequency
domain values, while (in some cases, concurrently) the
timing profile P(i) transforms the same TOI input data
stream into a difference, or ‘beat’, signals between pairs of
data streams. In some cases, the magnitude profile F(i) can
be generated (transformed) by digital filter banks. In this
case, TOI time-series input signals are received and an
output is generated into separate frequency ‘bins’. The
above is referred to as a transform because it is comparable
in effect to executing a Fast-Fourier-Transform (FFT) on
every single frame. This approach is advantageous because
it is much simpler to execute time-domain digital filters, in
addition to the fact that it is possible to manipulate or route
each output stream independently. In other cases, instead of
digital filter banks, the magnitude profile F(i) can be gen-
erated using a hardware implementation; for example, using
a hardware based field-programmable gate array (FPGA)
FFT module. In some cases, the per frame output from a
bank of digital filters is comparable to the per frame FFT
output of the same digital input signal.

The frequency domain values and the beat signals can be
provided to the machine learning model to further refine the
model and therefore provide enhanced accuracy for estimat-
ing the SBP and DBP.

FIG. 8 illustrates a exemplary diagram of the embodi-
ments described herein. The TOI module 110 receives a set
of images 802 of the human subject from a camera. Using
machine learning models, the TOI module 110 performs
bitplane analysis 804 on the set of images 802 to arrive at
TOI signals 806 for each ROI. In some cases, in order to
increase accuracy of the blood pressure determination, the
TOI module 110 can perform feature extraction 808 on each
of the TOI signals for each ROI to feed into the machine
learning model, as described herein. Feature extraction 808
can include, for example, determining waveform morphol-
ogy features of the signals; such as, horizontal (time) and
vertical (HC) features of the waves, derivatives of the
signals, or the like. Feature extraction 808 can also include,
for example, determining frequency domain features of the
signals; such as, magnitude and phase of a Fourier series of
the signals, or the like. Feature extraction 808 can also
include, for example, determining physiological biosignal
features of the signals; such as, heart rate, Mayer wave,
breathing, or the like. Feature extraction 808 can also
include, for example, determining blood-flow velocity based
on the signals. In some cases, demographics 810 (for
example, gender, age, height, weight, or the like) of the
human subjects can be used to inform the feature extraction
808. A machine learning model can then be trained 812 by
the machine learning module 112 based on the bitplane data
per ROI 806, in some cases in conjunction with the feature
extraction 808, to determine blood pressure data. The
machine learning model can be, for example, a convolu-
tional neural network (CNN), a deep neural network (DNN),
a multilayer perceptron (MLP), or the like. In some cases,
the accuracy of the training can be aided by ground truth
data 814; such as, systolic/diastolic blood pressure measured
on the human training subjects using, for example, an
inter-arterial blood pressure monitor. Using the trained
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machine learning model, blood pressure can be determined
for a particular human subject 816.

In further embodiments, optical sensors pointing, or
directly attached to the skin of any body parts such as for
example the wrist or forehead, in the form of a wrist watch,
wrist band, hand band, clothing, footwear, glasses or steer-
ing wheel may be used. From these body areas, the system
may also extract blood flow data for determination of blood
pressure.

In still further embodiments, the system may be installed
in robots and their variables (e.g., androids, humanoids) that
interact with humans to enable the robots to detect blood
pressure on the face or other-body parts of humans whom
the robots are interacting with. Thus, the robots equipped
with transdermal optical imaging capacities read the
humans’ blood pressure to enhance machine-human inter-
action.

The foregoing system and method may be applied to a
plurality of fields. In one embodiment the system may be
installed in a smartphone device to allow a user of the
smartphone to measure their blood pressure. In another
embodiment, the system may be provided in a video camera
located in a hospital room to allow the hospital staff to
monitor the blood pressure of a patient without causing the
patient discomfort by having to attach a device to the patient.

Further embodiments can be used in police stations and
border stations to monitor the blood pressure of suspects
during interrogation. In yet further embodiments, the system
can be used in marketing to see the blood pressure changes
of consumers when confronted with specific consumer
goods.

Other applications may become apparent.

Although the invention has been described with reference
to certain specific embodiments, various modifications
thereof will be apparent to those skilled in the art without
departing from the spirit and scope of the invention as
outlined in the claims appended hereto. The entire disclo-
sures of all references recited above are incorporated herein
by reference.

The invention claimed is:

1. A method for contactless blood pressure determination
of a human subject, the method executed on one or more
processors, the method comprising:

receiving a captured image sequence of light re-emitted

from the skin of one or more humans;
determining, using a trained hemoglobin concentration
(HC) changes machine learning model trained with a
HC changes training set, bit values from a set of
bitplanes in the captured image sequence that represent
the HC changes of the subject, the HC changes training
set comprising the captured image sequence;

determining a blood flow data signal of one or more
predetermined regions of interest (ROIs) of the subject
captured on the images based on the bit values from the
set of bitplanes that represent the HC changes;

applying a plurality of band-pass filters, each having a

separate passband, to each of the blood flow data
signals to produce a bandpass filter (BPF) signal set for
each ROI;
extracting one or more domain knowledge signals asso-
ciated with the determination of blood pressure from
the blood flow data signal of each of the ROIs;

building a trained blood pressure machine learning model
with a blood pressure training set, the blood pressure
training set comprising the BPF signal set of the one or
more predetermined ROIs and the one or more domain
knowledge signals;
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determining, using the blood pressure machine learning
model trained with the blood pressure training set, an
estimation of blood pressure for the human subject; and

outputting the determination of blood pressure.

2. The method of claim 1, wherein determining the
estimation of blood pressure comprises determining an
estimation of systolic blood pressure (SBP) and diastolic
blood pressure (DBP).

3. The method of claim 1, wherein the set of bitplanes in
the captured image sequence that represent the HC changes
of the subject are the bitplanes that are determined to
significantly increase a signal-to-noise ratio (SNR).

4. The method of claim 1, further comprising preprocess-
ing the blood flow data signal with a Butterworth filter or a
Chebyshev filter.

5. The method of claim 1, wherein extracting the one or
more domain knowledge signals comprises determining a
magnitude profile of the blood flow data signal of each of the
ROIs.

6. The method of claim 5, wherein determining the
magnitude profile comprises using digital filters to create a
plurality of frequency filtered signals of the blood flow data
signal in the time-domain for each image in the captured
image sequence.

7. The method of claim 1, wherein extracting the one or
more domain knowledge signals comprises determining a
phase profile of the blood flow data signal of each of the
ROIs.

8. The method of claim 7, wherein determining the phase
profile comprises:

applying a multiplier junction to the phase profile to

generate a multiplied phase profile; and

applying a low pass filter to the multiplied phase profile

to generate a filtered phase profile.

9. The method of claim 7, wherein determining the phase
profile comprises determining a beat profile, the beat profile
comprising a plurality of beat signals based on a Doppler or
an interference effect.

10. The method of claim 1, wherein extracting the one or
more domain knowledge signals comprises determining at
least one of systolic uptake, peak systolic pressure, systolic
decline, dicrotic notch, pulse pressure, and diastolic runoff
of the blood flow data signal of each of the ROlIs.

11. The method of claim 1, wherein extracting the one or
more domain knowledge signals comprises determining
waveform morphology features of the blood flow data signal
of each of the ROIs.

12. The method of claim 1, wherein extracting the one or
more domain knowledge signals comprises determining one
or more biosignals, the biosignals comprising at least one of
heart rate measured from the human subject, Mayer waves
measured from the human subject, and breathing rates
measured from the human subject.

13. The method of claim 1, further comprising receiving
ground truth blood pressure data, and wherein the blood
pressure training set further comprises the ground truth
blood pressure data.

14. The method of claim 13, wherein the ground truth
blood pressure data comprises at least one of an intra-arterial
blood pressure measurement of the human subject, an aus-
cultatory measurement of the human subject, or an oscillo-
metric measurement of the human subject.

15. A system for contactless blood pressure determination
of a human subject, the system comprising one or more
processors and a data storage device, the one or more
processors configured to execute:
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a transdermal optical imaging (TOI) module to receive a
captured image sequence of light re-emitted from the
skin of one or more humans, the TOI module deter-
mines, using a trained hemoglobin concentration (HC)
changes machine learning model trained with a HC
changes training set, bit values from a set of bitplanes
in the captured image sequence that represent the HC
changes of the subject, the HC changes training set
comprising the captured image sequence, the TOI mod-
ule determines a blood flow data signal of one or more
predetermined regions of interest (ROIs) of the subject
captured on the images based on the bit values from the
set of bitplanes that represent the HC changes;

a profile module to extract one or more domain knowl-
edge signals associated with the determination of blood
pressure from the blood flow data signal of each of the
ROIs;

a filter module to apply a plurality of band-pass filters,
each having a separate passband, to each of the blood
flow data signals to produce a bandpass filter (BPF)
signal set for each ROI;

a machine learning module to build a trained blood
pressure machine learning model with a blood pressure
training set, the blood pressure training set comprising
the BPF signal set of the one or more predetermined
ROIs and the one or more domain knowledge signals,
the machine learning module determines, using the
blood pressure machine learning model trained with the
blood pressure training set, an estimation of blood
pressure of the human subject; and

an output module to output the determination of blood
pressure.

16. The system of claim 15, wherein determination of the
estimation of blood pressure by the machine learning mod-
ule comprises determining an estimation of systolic blood
pressure (SBP) and diastolic blood pressure (DBP).

17. The system of claim 15, wherein the set of bitplanes
in the captured image sequence that represent the HC
changes of the subject are the bitplanes that are determined
to significantly increase a signal-to-noise ratio (SNR).

18. The system of claim 15, further comprising a filter
module to preprocess the blood flow data signal with a
Butterworth filter or a Chebyshev filter.

19. The system of claim 15, wherein extracting the one or
more domain knowledge signals by the profile module
comprises determining a magnitude profile of the blood flow
data signal of each of the ROIs.

20. The system of claim 19, wherein determining the
magnitude profile by the profile module comprises using
digital filters to create a plurality of frequency filtered
signals of the blood flow data signal in the time-domain for
each image in the captured image sequence.

21. The system of claim 15, wherein extracting the one or
more domain knowledge signals by the profile module
comprises determining a phase profile of the blood flow data
signal of each of the ROIs.

22. The system of claim 21, wherein determining the
phase profile by the profile module comprises:

applying a multiplier junction to the phase profile to
generate a multiplied phase profile; and

applying a low pass filter to the multiplied phase profile
to generate a filtered phase profile.

23. The system of claim 22, wherein determining the
phase profile by the profile module comprises determining a
beat profile, the beat profile comprising a plurality of beat
signals based on a Doppler or an interference effect.
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24. The system of claim 15, wherein extracting the one or
more domain knowledge signals by the profile module
comprises determining at least one of systolic uptake, peak
systolic pressure, systolic decline, dicrotic notch, pulse
pressure, and diastolic runoff of the blood flow data signal
of each of the ROIs.

25. The system of claim 15, wherein extracting the one or
more domain knowledge signals by the profile module
comprises determining waveform morphology features of
the blood flow data signal of each of the ROIs.

26. The system of claim 15, wherein extracting the one or
more domain knowledge signals by the profile module
comprises determining one or more biosignals, the biosig-
nals comprising at least one of heart rate measured from the
human subject, Mayer waves measured from the human
subject, and breathing rates measured from the human
subject.

27. The system of claim 15, wherein the profile module
receives ground truth blood pressure data, and wherein the
blood pressure training set further comprises the ground
truth blood pressure data.

28. The system of claim 27, wherein the ground truth
blood pressure data comprises at least one of an intra-arterial
blood pressure measurement of the human subject, an aus-
cultatory measurement of the human subject, or an oscillo-
metric measurement of the human subject.
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